Data augmentation

Computer Vision

[Paper Review] ImageNet Classification with Deep Convolutional Neural Networks(NIPS 2012)

ImageNet Classification with Deep Convolutional Neural Networks 0. Abstract ImageNet LSVRC-2010에서 1.2m개의 고해상도 이미지에 대해 1000개의 클래스로 분류하기 위해 large, deep convolutional neural network를 학습 test data에서 이전 SOTA 모델보다 좋은 top-1과 top-5 error rates에서 37.5%와 17.0%를 기록 AlexNet에는 약 6,000만개의 파라미터와 65만 개의 neurons가 5개의 convolutional layers로 구성 이에 더해 max-pooling layers와 1000-way softmax로 구성된 3개의 fully-connected l..

Deep Learning

[DL] 초기화와 정규화 - Xavier Initialization, He Initialization, batch normalization, weight decay, early stopping, data augmentation, bagging, Dropout

가중치 초기화(Weight Initialization) 신경망을 학습할 때 손실 함수에서 출발 위치를 결정하는 방법이 모델 초기화(initialization)이다. 특히 가중치는 모델의 파라미터에서 가장 큰 비중을 차지하기 때문에 가중치의 초기화 방법에 따라 학습 성능이 크게 달라질 수 있다. 상수 초기화 신경망의 가중치를 모두 0으로 초기화하여 뉴런의 가중치가 0이면 가중 합산 결과는 항상 0이 되고, 활성 함수는 가중 합산 결과인 0을 입력받아서 늘 같은 값을 출력한다. 예를 들어 활성 함수가 ReLU나 하이퍼볼릭 탄젠트면 출력은 0이 되고 시그모이드면 출력은 항상 0.5가 된다. 0이 아닌 다른 값의 경우에도 만약 가중치를 모두 같은 상수로 초기화하면 신경망에 대칭성(symmetry)이 생겨..

Project

[Project] 도배 하자 유형 분류 AI 경진대회

대회 정보 https://dacon.io/competitions/official/236082/overview/description DACON에서 진행한 '도배 하자 유형 분류 AI 경진대회'에 참여했다. 해당 대회는 19가지의 도배 하자 이미지를 가지고 유형 분류를 하는 AI 모델을 개발하는 대회이다. Train dataset의 경우 19개의 class folder에 총 3,457개의 데이터가 포함되어 있으며 모델 예측에 활용하는 Test dataset은 레이블이 주어져있지 않은 791개의 이미지 데이터이다. 평가 지표로는 weighted f1 score을 활용한다. 해당 데이터는 데이터 불균형이 매우 심한 데이터이다. 가장 데이터의 개수가 많은 클래스는 훼손으로 1,405개의 데이터가 있었고, ..