Data augmentation

Computer Vision

[Paper Review] ImageNet Classification with Deep Convolutional Neural Networks(NIPS 2012)

ImageNet Classification with Deep Convolutional Neural Networks 0. Abstract ImageNet LSVRC-2010에서 1.2m개의 고해상도 이미지에 대해 1000개의 클래스로 분류하기 위해 large, deep convolutional neural network를 학습 test data에서 이전 SOTA 모델보다 좋은 top-1과 top-5 error rates에서 37.5%와 17.0%를 기록 `AlexNet`에는 약 6,000만개의 파라미터와 65만 개의 neurons가 5개의 convolutional layers로 구성 이에 더해 max-pooling layers와 1000-way softmax로 구성된 3개의 fully-connected l..

Deep Learning

[DL] 초기화와 정규화 - Xavier Initialization, He Initialization, batch normalization, weight decay, early stopping, data augmentation, bagging, Dropout

가중치 초기화(Weight Initialization) 신경망을 학습할 때 손실 함수에서 출발 위치를 결정하는 방법이 모델 `초기화(initialization)`이다. 특히 가중치는 모델의 파라미터에서 가장 큰 비중을 차지하기 때문에 가중치의 초기화 방법에 따라 학습 성능이 크게 달라질 수 있다. 상수 초기화 신경망의 가중치를 모두 0으로 초기화하여 뉴런의 가중치가 0이면 가중 합산 결과는 항상 0이 되고, 활성 함수는 가중 합산 결과인 0을 입력받아서 늘 같은 값을 출력한다. 예를 들어 활성 함수가 ReLU나 하이퍼볼릭 탄젠트면 출력은 0이 되고 시그모이드면 출력은 항상 0.5가 된다. 0이 아닌 다른 값의 경우에도 만약 가중치를 모두 같은 상수로 초기화하면 신경망에 `대칭성(symmetry)`이 생겨..

Project

[Project] 도배 하자 유형 분류 AI 경진대회

대회 정보 https://dacon.io/competitions/official/236082/overview/description DACON에서 진행한 '도배 하자 유형 분류 AI 경진대회'에 참여했다. 해당 대회는 19가지의 도배 하자 이미지를 가지고 유형 분류를 하는 AI 모델을 개발하는 대회이다. Train dataset의 경우 19개의 class folder에 총 3,457개의 데이터가 포함되어 있으며 모델 예측에 활용하는 Test dataset은 레이블이 주어져있지 않은 791개의 이미지 데이터이다. 평가 지표로는 `weighted f1 score`을 활용한다. 해당 데이터는 데이터 불균형이 매우 심한 데이터이다. 가장 데이터의 개수가 많은 클래스는 `훼손`으로 1,405개의 데이터가 있었고, ..

Junyeong Son
'Data augmentation' 태그의 글 목록