퍼셉트론이란? `퍼셉트론(perceptron)`은 다수의 신호를 입력으로 받아 하나의 신호를 출력한다. 퍼셉트론의 신호는 '신호가 흐른다'를 의미하는 1, '신호가 흐르지 않는다'를 의미하는 0의 두 가지 값을 가질 수 있다. 입력 신호가 뉴런에 보내질 때는 각각 고유한 가중치가 곱해짐(W1X1, W2X2) 뉴런에서 보내온 신호의 총합이 정해진 한계를 넘어설 때만 1을 출력되며 '뉴런이 활성화한다'라고 표현 정해진 한계를 `임계값`이라고 하며 세타로 표현 퍼셉트론은 복수의 입력 신호 각각에 고유한 가중치를 부여하며, 가중치는 각 신호가 결과에 주는 영향력을 조절하는 요소로 작용 가중치가 클수록 해당 신호가 그만큼 더 중요함을 의미 단순한 논리 회로 AND 게이트 `AND 게이트`는 입력이 둘이고 출력은 ..
Paper 딥러닝을 활용한 반도체 웨이퍼 불량 유형 구분 모델에 관한 연구(백선재, 이민혁) Summary 0. Abstract 기존 산업현장에서는 반도체 웨이퍼 맵을 직접 확인하여 불량을 선별한다. 육안을 통한 웨이퍼 선별과정은 폭증하는 시장의 수요를 충족시킬 수 없다. 따라서 인간보다 신속, 정확한 반도체 웨이퍼 불량을 검출하여 자동화에 기여할 수 있는 AI 기술을 제시한다. 이를 위해 다층퍼셉트론(MLP)과 합성곱 신경망(CNN)을 기반으로 한 2가지 인공지능 모델을 고안하였고, 실험 결과 CNN 모델이 정확도가 평균 6.4% 더 높았음을 확인했다. 1. Introduction 반도체 칩은 수많은 제조공정을 거친 뒤 마지막 절차인 테스트를 통해 양품, 불량품을 선별한다. 반도체 수율 향상과 직결된 ..
새로운 프로젝트로 웨이퍼 맵 데이터를 활용한 이미지 분류와 관련된 연구를 진행하게 되었다. 이와 관련된 선행 연구를 찾아보던 중, 이 논문을 발견하게 되었고 프로젝트를 진행하는 데 있어 많은 도움이 될 것 같아 리뷰를 진행했다. 이 연구는 국내 반도체 기업에서 확보한 웨이퍼 맵 데이터를 통해 전처리 과정을 거쳐 이미지 분류 모델을 활용해 불량과 정상을 판단했다. 논문 : 합성곱 신경망을 이용한 웨이퍼 맵 기반 불량 탐지 0. 초록 이미지 분류에서 좋은 성능을 보여주는 합성곱 신경망을 웨이퍼 맵 이미지 데이터의 불량 여부를 판단하는 분류 모델로 사용 실제 제안하는 모델이 실제 반도체 공정에서 수집된 데이터를 활용한 실험을 통해 기본적인 다층 퍼셉트론과 랜덤 포레스트보다 더 나은 예측 정확도를 가지고 있음을..