[DL] 성능 최적화 - Batch Normalization, Dropout, Early Stopping
성능 최적화 데이터를 사용한 성능 최적화 일반적으로 ML/DL 알고리즘은 데이터양이 많을수록 성능이 좋기 때문에 가능한 많은 데이터를 수집 많은 데이터를 수집할 수 없다면 직접 데이터를 만들어 사용 활성화 함수로 시그모이드(0~1의 값), 하이퍼볼릭 탄젠트(-1~1의 값) 등을 사용하여 데이터셋 범위를 조정 정규화, 규제화, 표준화 등도 성능 향상에 도움 알고리즘을 사용한 성능 최적화 ML/DL을 위한 다양한 알고리즘 중 유사한 용도의 알고리즘들을 선택하여 모델을 훈련시켜 보고 최적의 성능을 보이는 알고리즘을 선택해야 한다. 알고리즘 튜닝을 위한 성능 최적화 모델을 하나 선택하여 훈련시키려면 다양한 하이퍼파라미터를 변경하면서 훈련시키고 최적의 성능을 도출해야 한다. 진단 : 성능 향상이 어느 순간 멈췄을..