paper review

NLP

[Paper Review] Effective Approaches to Attention-based Neural Mahine Translation(EMNLP 2015)

Effective Approaches to Attention-based Neural Machine Translation(EMNLP 2015) 0. Abstract Attention mehanism은 번역 과정에서 source sentence를 선택적으로 focusing 하는 방식으로 NMT(Neural Machine Translation)를 개선시키는 데 사용됨 그러나 NMT 분야에서 더욱 효율적으로 attention을 사용하는 architecture를 탐색하는 작업은 거의 없었음 2개의 간단하고 효과적인 Attention Mechanism을 제시 항상 모든 source word를 활용하는 global attentional model 한 번에 source word의 subset만 활용하는 `loc..

Computer Vision

[Paper Review] ViT: An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale(ICLR 2021)

An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale(ViT)(ICLR 2021) Abstract Transformer 구조가 NLP task에서 사실상 기준이 되는 동안 Computer Vision에서의 응용은 제한적 Vison에서 Attention은 Convolutional networks와 함께 적용하거나 전체 구조를 그대로 유지하면서 Convolution Network의 특정 구성 요소를 대체하는 데 사용 CNN에 의존할 필요가 없으며 Image patches의 sequences에 직접 적용된 pure transformer가 Image classification task에서 매우 우수한 성능을 보임 대량의 데이..

Computer Vision

[Paper Review] ImageNet Classification with Deep Convolutional Neural Networks(NIPS 2012)

Paper ImageNet Classification with Deep Convolutional Neural Networks(NIPS 2012) 본 논문의 코드 구현은 깃허브에서 확인 가능합니다. 0. Abstract ImageNet LSVRC-2010 대회에서 120만 개의 고해상도 이미지를 1000개의 다른 이미지로 분류하기 위해 크고 깊은 convolutional neural network를 훈련시켰다. 테스트 데이터에서 이전의 SOTA 모델보다 나은 37.5%, 17.0%의 top-1 error rate와 top-5 error rate를 달성했다. 6천만 개의 파라미터들과 650,000개의 뉴런으로 구성된 neural network는 5개의 convolutional layers로 구성되며, 그 중..