Computer Vision
[DL] CNN(Image classification) - LeNet-5, AlexNet, VGGNet, GoogleNet, ResNet
`이미지 분류(classification)`는 특정 대상이 영상 내에 존재하는지 여부를 판단하는 것이다. 이미지 분류에서 주로 사용되는 합성곱 신경망의 유형은 다양하다. LeNet-5 `LeNet-5`는 합성곱 신경망이라는 개념을 최초로 개발한 구조로, 현재 CNN의 초석이 되었다. LeNet-5는 `합성곱(convolutional)`과 `다운 샘플링(sub-sampling)`(혹은 풀링)을 반복적으로 거치면서 마지막에 완전연결층에서 분류를 수행한다. LeNet-5의 신경망 구조는 다음과 같다. (32 x 32 x 1) 크기의 이미지에 합성곱층과 최대 풀링층이 쌍으로 두 번 적용된 후 완전연결층을 거쳐 이미지가 분류되는 신경망이다. 이러한 신경망 구조를 파이토치를 통해 구현하면 다음과 같다. 입력 이미지..