PACF

Time Series

[Time Series] ARIMA - Stationarity, Differencing, Backshift, AutoRegressive, Moving Average, ACF, PACF

`지수평활(exponential smoothing)`과 `ARIMA` 모델은 시계열을 예측할 때 가장 널리 사용하는 두 가지 접근 방식 지수평활 모델은 추세와 계절성에 대한 설명에 기초하고, ARIMA 모델은 데이터에 나타나는 `자기상관(autocorrelation)`을 표현하는 데 목적 정상성(Stationarity)과 차분(Difference) 정상성(Stationarity) `정상성(stationarity)`을 나타내는 시계열은 시계열의 특징이 관측된 시간에 무관 추세나 계절성은 서로 다른 시간에 시계열의 값에 영향을 주기 때문에 추세나 계절성이 있는 시계열은 정상성을 나타내는 시계열이 아님 추세나 계절성은 없지만 주기성 행동을 가지고 있는 시계열은 정상성을 나타내는 시계열 주기가 고정된 길이를 갖..

Junyeong Son
'PACF' 태그의 글 목록