Machine Learning
[ML] 머신러닝 모델 학습 프로세스
머신러닝 핵심 아이디어 머신러닝의 핵심 아이디어는 X와 Y의 관계를 찾는 것이다. 여기서 우리의 주 관심은 예측하려는 대상인 Y이며, Y를 설명하는 X 변수는 보통 여러 개이기 때문에 여러 개의 X와 Y의 관계를 찾는 것이다. 이를 위해 X 변수들을 조합(결합)하여 Y를 표현하며, 조합하는 방법은 무수히 많다. 이는 수학적으로 Y = f(X1, X2, ..., Xp)로 표현된다. 만약, X1과 X2 두 개의 변수로 Y를 설명하려고 할 때, 이에 대한 수식은 다음과 같이 표현할 수 있다. w1과 w2는 파라미터, 혹은 모수, 매개변수라고 부른다. 머신러닝 모델의 핵심은 결국 주어진 데이터를 통해 모델의 파라미터를 찾는 것이라고 할 수 있다. 파라미터 추정 `Loss function(손실 함수)`의 경우 개..